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Abstract

Preventive maintenance (PM) is an effective approach to promoting reliability. Time-based and condition-based maintenance are two
major approaches for PM. No matter which approach is adopted for PM, whether a failure can be early detected or even predicted is the key
point. This paper presents the experimental results of a failure prediction method for preventive maintenance by state estimation using the
Kalman filter on a DC motor. The rotating speed of the motor was uninterruptedly measured and recorded every 5 min from 1 April until 20
June 2001. The measured data are used to execute Kalman prediction and to verify the prediction accuracy. The resultant prediction errors are
acceptable. Futhermore, the shorter the increment time for every step used in Kalman prediction, the higher prediction accuracy it achieves.
Failure can be prevented in time so as to promote reliability by state estimation for predictive maintenance using the Kalman filter. © 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

High quality and excellent performance of a system are
always goals for engineers to achieve. Reliability engineer-
ing integrates quality and performance from the beginning
to the end of a system life [1]. Therefore, reliability can be
treated as the time dimensional quality of a system. Relia-
bility is affected by every stage throughout the system life,
including its development, design, production, quality
control, shipping, installation, operation, and maintenance.
Consequently, paying attention to each of the stages can
promote reliability. Specifically, in the onsite operation
phase, failures are the main causes that worsen performance
and degrade reliability. Accordingly, failure avoidance is
the main approach to reliability assurance. There are three
main types of maintenance, namely improvement main-
tenance (IM), preventive maintenance (PM), and corrective
maintenance (CM) [2]. The efforts of IM are to reduce or
eliminate entirely the need for maintenance, i.e. IM is
performed at the design phase of a system emphasizing
elimination of failures that require maintenance. There are
many restrictions for a designer, however, such as space,
budget, market requirements, etc. Usually, the reliability of
a product is related to its price. By contrast, CM is the repair
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actions executed after failure occurrence. PM denotes all
actions intended to keep equipment in good operating condi-
tion and to avoid failures [2]. As a result, PM should be able
to pinpoint when a failure is about to occur, so that repair
can be performed before such failure causes damage.

PM is an effective approach to promoting reliability [3].
Time-based and condition-based maintenance are two major
approaches for PM. No matter which approach is adopted
for PM, whether a failure can be early detected or even
predicted is the key point. If a device is judged to know
that it is going to fail by the predicted future state variables,
the failure can be prevented in time by PM. However, future
state variables should be accurately predicted at a reason-
ably long time ahead of failure occurrence [4,5]. A failure
prediction study entitled ‘State estimation for predictive
maintenance using Kalman filter’ has been proposed [6].
In the study, failure times were generated by Monte Carlo
simulation and predicted by the Kalman filter. One-step-
ahead and two-step-ahead predictions were conducted.
Resultant prediction errors are sufficiently small in both
predictions. Even so, the failure prediction was simulated
on a computer after all. In the current study, a DC motor and
a data acquisition system are set to implement the simula-
tion. The rotating speed of the motor is chosen as the major
state variable to judge whether the motor is going to fail by
state estimation using the Kalman filter. The rotating speed
of the motor was uninterruptedly measured and recorded
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Nomenclature

or The value of (-) at time kT

O The estimate of (-) at time aT based on all known
information about the process up to time bT

A A matrix

A Coefficient matrix of the state equation for a
continuous system

Aq Coefficient matrix of the state equation for a
discrete system

AT Transpose matrix of A

A Inverse matrix of A

B Damping coefficient

B. Coefficient matrix of the state equation for a
continuous system

By Coefficient matrix of the state equation for a
discrete system

By Coefficient matrix for the input term of a discrete
state equation

C A matrix

C. Coefficient matrix of the state equation for a
continuous system

Cqy Coefficient matrix of the state equation for a
discrete system

D, Coefficient matrix of the state equation for a
continuous system

Dy Coefficient matrix of the state equation for a
discrete system

E Applied voltage

E, Estimation error

H, Matrix giving the ideal (noiseless) connection
between the measurement and the state vector

iy Armature winding current

J Moment of inertia of rotor and load

ks, Back emf constant

Ky Kalman gain

kr Motor torque constant

L, Armature winding inductance

L™ The inverse Laplace transform

Pur—1  Estimation error covariance matrix

O Covariance matrices for disturbance

R Armature winding resistance

R, Covariance matrices for noise

t Time variable

T Motor output torque

T Increment time for every step in Kalman predic-
tion

Uy Control input of a discrete state equation at state
k

v Variation of the estimated rotating speed

Vi Noise, measurement error vector. It is assumed
to be a white sequence with known covariance

Wi Disturbance, system stochastic input vector. It is

assumed to be a white sequence with known
covariance and having zero cross-correlation
with V) sequence

x, X Variable of a distribution function

Xpo Initial states resulting from deterministic input
X System state vector at state k
Xso Initial states resulting from stochastic input

Y, System output vector at state k

Z Output measurement vector

0 Motor angle displacement

0 Motor rotating speed

7 Mean value of a distribution function

T Standard deviation of a distribution function

D, Matrix relating X; to X, in the absence of a
forcing function. It is the state transition matrix
if X, is sampled from a continuous process

every S min from 1 April until 20 June 2001. Instead of
simulated data, the measured data are used to execute
Kalman prediction and to verify the prediction accuracy in
the current study.

In the next section, equations for state estimation of the
Kalman filter are briefly introduced. Section 3 presents the
transfer function, continuous state model, and the discrete
state model of a DC motor that is employed in this paper.
Section 4 presents the experiment setup with related
parameters. Results and discussions are in Section 5.

2. Kalman filtering

The block diagram of a discrete system is shown in Fig. 1.
The state equations [7] are:

Xiv1 = DXy + BU + Wy, (nH

Yk = Hka, (2)

Zk:Yk+Vk' (3)

State estimation aims to guess the value of X, by using
measured data, i.e. Zy, Z;, ... Z;—;. Let a = b, and define
the notation (%), as the estimate of (-) at time aT based on
all known information about the process up to time bT.
Accordingly, X, is called the prior estimate of X, and
X is called the posterior estimate of X [8].

The Kalman filter is a copy of the original system and is
driven by the estimation error and the deterministic input.
The block diagram of the filter structure is shown in Fig. 2.
The filter is used to improve the prior estimate to be the
posterior estimate by the measurement Z;. A linear blending
of the noisy measurement and the prior estimate is written as
given in Ref. [8]

Xiw = Xon—1 + Ki(Z — HiXpim1), 4

where K; is a blending factor for this structure. As depicted
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Fig. 1. Block diagram of a discrete system.

in Fig. 2, the one-step-ahead estimate is formulated as isX = [0 6 iy ]T, where
~ ~ N d .
Xirine = OuXpp—1 + oK (Z — HiXpp—1) + By Uy P 0=190. @)

= O [ X1 + Ki(Zy — HXpp1)] + BLU,
= O Xy + B U &)

According to the aforementioned statements, recursive steps
for constructing an one-step estimator are summarized in Fig. 3.
However, initial conditions, i.e. Xo_i,Po_1> Po» Ho» Qo
and Ry have to be known to start recursive steps.

3. Armature-controlled DC motor

An armature-controlled DC motor is employed in this
study to perform state prediction. The motor circuit repre-
sentation is shown in Fig. 4. The transfer function of a DC
motor is derived as [9]

o) _ kr

E(s)  s[(sLa + R)sJ + B) + krky] ©

Define 6, 6, and i, as state variables, so that the state vector

In measurement, the rotating speed 6 is the motor output.
Accordingly, the continuous state equations of the DC
motor are

0
A7 o 22 = |7
= = J U ol+] 9 |E
dr k R 1
iy 0 _L_t _L_d iy L_d
0
Yy=[0 1 01| 6 |. )
Iy

The general form of state equations for a continuous system
reads [10]:
V() = A V() + B.U®), Y(¢) = C.V(¢) + DU(®). (10)

Let @.(1) = L™'[(s] — Ac)fl] be the state transition matrix
for Eq. (10), where L' denotes the inverse Laplace
transform. The discrete state equations sampled from
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Fig. 2. Block diagram of Kalman filter.
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Fig. 3. One-step estimator.

Eq. (10) by a sample-and-hold with time interval T seconds
are as follows [11]:

Xk + 1 :Aka + BdUk7

Yk == Cka + DdUk’

where

Aq = @ (T), (11)
T

By = [J (pC(T)dT]Bc, (12)
0

Cy=C,, (13)

Dy = D,. (14)

4. Experiment setup

The experiment setup, as shown in Fig. 5, is composed of
a DC motor with driver unit and a data acquisition system.

4.1. DC motor

The DC motor used in this experiment is made by TECO,
Taiwan. The model number of the motor is GSDT-1/2 hp.
Parameters for the DC motor used in this study
are as follows [12]: E=150V, B=0.001135 Nms,
J=00102kgm?, K =0.153Nm/A, K,=1926Vs,
R=13.84Q, L,=0.01 H. Substituting them into Eqgs. (8)

O

ef L¢ @'

0

and (9), the continuous state equations of the motor become

0 0 1 0 0 0
% 6|l=10 —o0.111 15 61+ o |150,
iy 0 —192.6 —384]Li, 100
(15)
6
Y=[0 1 0]| é |. (16)

Iy
The discrete state equations sampled from Egs. (15) and
(16) with time interval T = 1200 s are

O+ 1 1 0.13098 0.00511647[ 6
0,0 | =10 0 0 0,
laj+1 0 0 0 lak
613.91
+| 051164 150, a7)
0.0037955
6%
Y,=[0 1 0]] 6, |. (18)
lak
R La

Fig. 4. Circuit representation of DC motor.
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The following parameters are also used to conduct state

estimation in this study.

1. Sampling interval T = 20 min that is the increment time
for every step in Kalman prediction. For comparing
results among shorter and longer T, this study performed
another two estimations with different time intervals
between two states, i.e. T =5 and 60 min.

2. Disturbance W) has mean 0 and variance 0.1 V [13].

3. Measurement error V; for 6 has zero mean and 1% full-
scale accuracy [14] of the measurement.

4. The rated rotating speed of the DC motor is 3180 rpm
[12], which is prescribed as the initial value of the state
variable 6.

4.2. Data acquisition system

The data acquisition system used in this study is
composed of a photo-interrupter circuit, a personal computer
(PC), and a RS-232 transmission interface [14]. The rotating
speed of the DC motor is measured by the photo-interrupter
coded GP1S02. The shaft of a rotary disk is connected to the

(b)

Fig. 5. Experiment setup.

shaft of the DC motor, and the disk is placed between the
light-emitting element and the light-receiving element of
the photo-interrupter so as to generate pulse-signals while
the motor rotates. The device and the circuit are shown in
Fig. 6.

Pulse-signals are transmitted to the PC through the RS-
232 interface, and the PC counts the pulses that are
accumulated within 60 s in order to derive the rotating
speed in rpm (revolutions per minute).

5. Results and discussions
5.1. Results

5.1.1. Measured data

The rotating speed of the motor was measured and
recorded every 5 min day and night from 1 April until 20
June 2001. Because the experiment lasted for nearly three
months, a large number of data were thus accumulated.
There are 288 measurements in a day and 23,040 data in
total for that period of time. Fig. 7 shows the results. The
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Fig. 6. Device and circuit for rotating speed measurement.

data were fed into the estimator, as depicted in Fig. 3, to
estimate the one-step-ahead state variables. The measured
data and the resultant estimates for T = 20 min (i.e. every
four measurements) are shown in Fig. 8. The data will be
mixed up and become hard to read if all 23,040 data are
shown in one chart. To avoid this and to present the results
more clearly, the time-axis unit of Fig. 8 is set to be 24 h (i.e.
one point per day).

5.1.2. Estimate error percentage
The estimate error percentage is defined as

E % = Oiein = Oisr o 100g;, (19)
k+1

E, represents the difference between predicted value and
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Fig. 7. Measured rotating speed for every 5 min.
actual value. Fig. 9 shows the results that are derived from be the individual accuracy of each estimate, and
Eq. (19) using the data in Fig. 8. Reading from Fig. 9, the 23,040
maximum E, % is less than 3%. Z X
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= , 21
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5.1.3. Mean value and variance of the estimate accuracy
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Fig. 8. Measured and estimated rotating speed of the motor.
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Fig. 9. Estimate error percentage.

be the mean value and the variance [15] of the accuracy for
the 23,040 samples, respectively. According to Egs. (20)—
(22), the resultant mean values, variances, and standard
deviations (o) of the estimate accuracy for T =5, 20, and
60 min are summarized in Table 1.

5.1.4. Rotating speed variation
Variation percentage of the estimated rotating speed of
the DC motor is defined as

01 — 3180

V% = 3180 X 100%. (23)
V% represents the variation percentage of the estimated
rotating speed from the rated value 3180 rpm, i.e. the
abnormality extent of the motor performance. It is used to
judge whether the motor is going to fail or not. Since the
mean time between failure (MTBF) of a motor is about
100,000 h [16], the rotating speed of the motor in this
study varied less than 2% of the rated value during the
experiment time period. Variation percentage of the estimated
rotating speed of the DC motor is shown in Fig. 10.

5.2. Discussions

1. The mean estimate accuracies for T =5, 20, and 60 min

Table 1
Mean value, standard deviation, and variance for different T
T (min) M (%) o (%) o (%)

5 99.74656 0.402957 0.162374
20 99.74060 0.471612 0.222418
60 99.72771 0.652469 0.425716

are all higher than 99.7%, which infers that the one-step-
ahead state variable can be accurately predicted using the
proposed method in this experiment.

2. A threshold is a value used to judge an equipment failure
occurs or not. It is prescribed as the measurement value
that is taken just prior to or at the time of failure [17]. For
failure prediction, the threshold for a motor should be
determined by the user of the motor according to require-
ments for specific situations. Once the estimated value
reaches the threshold, the failure is predicted.

3. The disturbance amplitude should be composed of all
possible uncertainties of the motor and the environment.

4. Since the prediction is for PM purpose, the prediction
time should be reasonably long enough for the PM
action.

5. The proposed method in this study is exemplified by a
motor system, which is treated as a component. The
procedure can be executed on a multi-component system
if state equations for the components as a whole can be
constructed. Performing the procedure on either the
multi-component system or each of the components are
both feasible. For a complicated or large system, the
proposed method can be performed on those elements
in minimum cut sets that are constructed by fault tree
analysis or Petri net model for failure [18].

6. Conclusions

An experiment of state estimation for predictive mainte-
nance using the Kalman filter on a DC motor has been
performed in this paper. The resultant prediction errors for
one-step-ahead prediction are acceptable. Furthermore, the
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Fig. 10. Variation percentage of the estimated rotating speed.

shorter the increment time for every step in Kalman predic-
tion uses, the higher prediction accuracy it achieves.
Considerations for determining the required PM lead time
and the increment time for prediction contradict to each
other. How to compromise them and end up with an optimal
value is important. Incorporating the proposed method with
fault tree analysis or Petri net model for failure, can be
performed on those elements in minimum cut sets of a
complicated or large system instead of on all elements of
the whole system. Failure can be prevented in time so as to
promote reliability by state estimation for predictive
maintenance using the Kalman filter.
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